Broadening Indigenous participation across the disciplines:

Australian Council of Deans of Science
Executive Meeting 29 September 2014

Professor Ian Anderson
Co-Chair
Aboriginal and Torres Strait Islander
Higher Education Advisory Council
Aboriginal and Torres Strait Islander Higher Education Advisory Council
ATSIHEAC policy development framework

1. Broadening access across the disciplines
2. Whole of University Strategy
3. Academic Workforce
4. Sustainable financing
5. System level performance monitoring
Broadening participation across the disciplines

• 11% of Indigenous people are employed in professional occupations, compared to 20% of non-Indigenous people

• Most common occupation group for employed people:
 • For Indigenous people - Labourer (24%)
 • For non-Indigenous people - Professional (20%)

Drawn from Census data 2006 and 2011
Only two per cent of Indigenous students were top performers in scientific literacy compared to 14 per cent of non-Indigenous students and an average of 8 per cent of students across the OECD. At the lower end of the proficiency scale, 37 per cent of Indigenous students failed to reach Level 2 compared to 13 per cent of non-Indigenous students and 18 per cent on average across the OECD.

Half of the Indigenous students failed to reach Level 2 and half of these students performed at below Level 1, that is, one-quarter of Indigenous students would be likely to have serious difficulties in using mathematics to prepare them in meeting future challenges. The proportion of low-performing Indigenous students (51%) was more than twice that of non-Indigenous students (18%) and the OECD average (23%).

Science Literacy and Science Interest

Retrospective analysis of PISA 2006 (McConney et al 2011):
• Indigenous science literacy lags non-Indigenous literacy by about 83.5 points (0.76 standard deviation units)
• Indigenous science interest led that of non-Indigenous students by 10 points (0.1 SD)
• Regression modelling: Reading Literacy accounted for 62 per cent of science literacy variance
Implications for schools

• There is a gap in achievement (science literacy)
• The gap is not a result of lower interest in science but instead mainly associated with reading literacy
• Use interest in science to improve reading literacy
 • Recognise that science is more than facts and definitions and knowledge in science can build on what students know
Science Engagement and Literacy

Analysis of 2006 PISA Indigenous/Non-Indigenous Australian and NZ Students (Woods-McConney et al., 2013):

• There is a gap in achievement (science literacy)
• The gap is not a result of lower interest in science but instead mainly associated with reading literacy

Use the interest in science to improve reading literacy

• Recognise that science is more than facts and definitions and knowledge in science can build on what students know
Implications for practice

• Relationship among factors in science literacy and engagement not completely understood
• Engagement in science not always associated with high science literacy
• Engagement in science is valuable on its own, not only as a precursor to science literacy
• Connecting out-of-school activities to ‘school science’ may help improve engagement in science for all students
Indigenous participation in science - enrolments

Natural and Physical Sciences Enrolments (Indigenous and all students), 2005-2013

- Natural and Physical Sciences enrolments - all students
- Natural and Physical Sciences enrolments - Indigenous students
Indigenous participation in science - completions

Natural and Physical Sciences Completions (Indigenous & all students), 2005-2013

- All students
- Indigenous students
Natural & Physical Sciences Enrolments by Level of Course, 2013

All students

Postgraduate

Bachelor

Sub bachelor

Indigenous students

6.4%

91.2%

2.4%

18.0%

80.7%

1.3%
Natural & Physical Sciences Completions by Level of Course, 2013

All students

- Postgraduate: 20.5%
- Bachelor: 78.1%
- Sub bachelor: 1.4%

Indigenous students

- Bachelor: 84.7%
- Sub bachelor: 15.3%
Areas where Deans can make a difference

1. Outreach
2. Pedagogy
3. Curriculum
4. Preparation
5. Accountability
6. Pathways
7. Network
8. Sharing information
Supporting student success

[Ian: do you have an image we could use in this slide – one of students doing STEM-related studies – one that you have permission to use?]